Positioning in Global Value Chains:
World Map and Indicators.
A new dataset available for GVC analyses

Michele Mancini1 Pierluigi Montalbano 2 Silvia Nenci 3
Davide Vurchio4

1Bank of Italy 2Sapienza University 3Roma Tre University
4University of Bari

European Trade Policy and Global Value Chains
International Workshop
Roma Tre University - June, 10
Summary

- Motivations and main objectives
- Upstreamness and downstreamness indicators
- Descriptive statistics
- An empirical test
- Concluding remarks
Motivations

• Scholars have developed various indicators to map and measure the involvement of countries and sectors in GVCs
 • Hummels et al., 2001; Johnson and Noguera, 2012; Koopman, Wang and Wei, 2014; Borin et al., 2021.

• Recently, a strand of the literature has developed new measures of the positioning of countries and sectors in GVCs
 • Fally, 2012; Antràs et al., 2012; Antràs and Chor, 2013; Fally and Hillberry, 2015; Alfaro et al., 2019; Millerand Temurshoev, 2017; Wang et al., 2017

• Using global Input-Output tables it is now possible to compute upstreamness and downstreamness measures of specific industries and countries.

• Together with the GVCs participation indicators, these positioning measures: i) help enrich and complete empirical analyses on GVCs, ii) can be included in the economic models of GVCs, iii) and can inform policymaking.
A new dataset of GVC positioning indicators at the country, sector and country-sector level ready to use and available to scholars

- Measure of distance or **upstreamness** of a production sector from final demand
 - developed by Fally (2012), Antras et al. (2012), and Antras and Chor (2013, 2019)
- Measure of distance or **downstreamness** of a given sector from the economy’s primary factors of production (or sources of value-added)
 - originally proposed by Fally (2012)
- **International comparison**, by sectors and regions, of these indicators and their evolution over time.
- Present a pilot test on the **effects** of these indicators on productivity.
A new dataset of GVC positioning

Data source

- **EORA26** dataset (189 countries and 26 sectors) for the period 1995-2015.

- **ADB MRIO** database (63 countries and 56 sectors) for the period 2007-2019.

Coming next:

- **Long-run WIOD** dataset (25 countries and 23 sectors for the period 1965-2000)

- **TiVA OECD** dataset (66 countries and 45 sectors for the period 1995-2018)

Added-value of this work: Researchers working on GVCs and belonging to different disciplines – economic sociology, international economics, economic geography, international political economy, international business – will benefit from these ready-to-use indicators.
Computing indicators

- **Upstreamness** (Fally, 2012; Antras et al., 2012; Antras and Chor, 2013)

 Captures the distance of a given sector from final demand (average number of production stages).

 A relatively upstream sector is one that sells a small share of its output to final consumers, and instead sells disproportionately to other sectors that themselves sell relatively little to final consumers.

- **Downstreamness** (Fally, 2012)

 Captures the distance of a given sector from the economy’s primary factors of production (or sources of value-added).

 An industry in each country is downstream if its production process embodies a larger amount of intermediate inputs relative to its use of primary factors of production.
Formally...

By using the intermediate use matrix (Z), the final demand matrix (FD) and the value-added matrix (VA):

Upstreamness

\[
Y_i^r = \sum_{s=1}^{S} \sum_{j=1}^{J} Z_{ij}^{rs} + \sum_{j=1}^{J} FD_{ij}^r =
\]

\[
= \sum_{s=1}^{S} \sum_{j=1}^{J} a_{ij}^{rs} Y_j^s + FD_i^r
\]

where \(Y_i^r \) is the gross output in sector \(r \) in country \(i \) and \(a_{ij}^{rs} = \frac{Z_{ij}^{rs}}{Y_j^s} \)

\[
Y_i^r = FD_i^r + \sum_{s=1}^{S} \sum_{j=1}^{J} a_{ij}^{rs} FD_j^s + \sum_{s=1}^{S} \sum_{j=1}^{J} \sum_{t=1}^{S} \sum_{k=1}^{J} a_{ij}^{rs} a_{ik}^{st} FD_k^t + \ldots
\]

multiplying each term by its respective production-staging distance from final use +1 and dividing everything by \(Y_i^r \):

\[
U_i^r = 1 \times \frac{FD_i^r}{Y_i^r} + 2 \times \frac{\sum_{s=1}^{S} \sum_{j=1}^{J} a_{ij}^{rs} FD_j^s}{Y_i^r} + 3 \times \frac{\sum_{s=1}^{S} \sum_{j=1}^{J} \sum_{t=1}^{S} \sum_{k=1}^{J} a_{ij}^{rs} a_{ik}^{st} FD_k^t}{Y_i^r} + \ldots
\]
Formally...

- **Downstreamness**

\[Y_j^s = \sum_{r=1}^{S} \sum_{i=1}^{J} Z_{ij}^{rs} + VA_j^s = \]

\[= \sum_{r=1}^{S} \sum_{i=1}^{J} b_{ij}^{rs} Y_i^r + VA_j^s \]

where \(b_{ij}^{rs} = \frac{Z_{ij}^{rs}}{Y_i^r} \)

\[Y_j^s = VA_j^s + \sum_{r=1}^{S} \sum_{i=1}^{J} b_{ij}^{rs} VA_i^r + \sum_{r=1}^{S} \sum_{i=1}^{J} \sum_{t=1}^{S} \sum_{k=1}^{J} b_{tr}^t b_{ij}^{rs} VA_k^t + \ldots \]

multiplying each term by its respective production-staging distance from primary factors stage +1 and dividing everything by \(Y_j^s \):

\[D_j^s = 1 * \frac{VA_j^s}{Y_j^s} + 2 * \frac{\sum_{r=1}^{S} \sum_{i=1}^{J} b_{ij}^{rs} VA_i^r}{Y_j^s} + 3 * \frac{\sum_{r=1}^{S} \sum_{i=1}^{J} \sum_{t=1}^{S} \sum_{k=1}^{J} b_{tr}^t b_{ij}^{rs} VA_k^t}{Y_j^s} + \ldots \]
Economic interpretation

Upstreamness (U) index:

- The U index measures *how many stages of production are left before the goods or services reach final consumers.* It takes as a point of reference the sources of final demand at the end of each production chain, and compute the upstreamness of the country-industry relative to final use.
- Final goods can be considered 1 step away from demand, inputs directly used to produce final goods are 2 steps away from demand, inputs used to produce inputs are 3 steps away from demand, and so on.
- $U \geq 1$: larger values are associated with relatively higher levels of upstreamness of the output originating from one sector.

Downstreamness (D) index:

- The D index captures the downstreamness of each country-industry from where production processes commence, namely from primary factors. It measures distance of a given sector from the economy’s primary factors of production (or sources of value-added).
- $D \geq 1$: larger values are associated with relatively higher levels of downstreamness of an industry.
Positioning in Global Value Chains

GVC Positioning over time (world average)

(a) Upstreamness

(b) Downstreamness
Positioning in Global Value Chains

Motivations and main objectives
A new dataset of GVC positioning
Descriptive statistics
An empirical test
Concluding remarks

GVC Positioning by region over time

(a) Upstreamness

(b) Downstreamness
GVC Positioning by sector (world average, 1995-2015)

(a) Upstreamness

(b) Downstreamness
Our empirical test: positioning and productivity

- we adopt a standard Cobb-Douglas production function with L and K, augmented with indicators of GVCs positioning
- we assume that a technology shifter is driven by a standard process of economic innovation and a range of trade-related determinants, including trade and GVC performances

$$\theta_{cjt} = \alpha_{ct} + \beta_1 k_{cjt} + \beta_2 pos_{cjt} + \eta_{jt} + \omega_{cj} + \epsilon_{cjt}$$

where

θ_{cjt} is the country-sectoral value added per worker of the manufacturing sectors, k_{cjt} is country-sectoral capital intensity and pos_{cjt} is a measure of GVC positioning. α_{ct}, η_{jt}, ω_{cj} are country-time, sector-time, and country-sector effects, respectively.
Results: baseline estimates

<table>
<thead>
<tr>
<th>DepVar: Labor Productivity (ln)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital stock per employee (ln)</td>
<td>0.181***</td>
<td>0.112***</td>
<td>-0.001</td>
<td>-0.000</td>
<td>0.046**</td>
<td>0.045**</td>
</tr>
<tr>
<td></td>
<td>(0.041)</td>
<td>(0.040)</td>
<td>(0.022)</td>
<td>(0.022)</td>
<td>(0.018)</td>
<td>(0.018)</td>
</tr>
<tr>
<td>Downstreamness (ln, t-1)</td>
<td>-1.284***</td>
<td>-1.115**</td>
<td>-1.319***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.342)</td>
<td>(0.492)</td>
<td>(0.426)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upstreamness (ln, t-1)</td>
<td>0.448***</td>
<td>-0.103</td>
<td>-0.710**</td>
<td>(0.108)</td>
<td>(0.344)</td>
<td>(0.304)</td>
</tr>
<tr>
<td></td>
<td>(0.108)</td>
<td>(0.344)</td>
<td>(0.304)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-3.343***</td>
<td>-4.324***</td>
<td>-1.977***</td>
<td>-2.948***</td>
<td>-2.177***</td>
<td>-2.851***</td>
</tr>
<tr>
<td></td>
<td>(0.389)</td>
<td>(0.338)</td>
<td>(0.453)</td>
<td>(0.312)</td>
<td>(0.396)</td>
<td>(0.290)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.63</td>
<td>0.63</td>
<td>0.95</td>
<td>0.95</td>
<td>0.97</td>
<td>0.97</td>
</tr>
<tr>
<td>N</td>
<td>7,614</td>
<td>7,548</td>
<td>7,598</td>
<td>7,532</td>
<td>7,598</td>
<td>7,532</td>
</tr>
<tr>
<td>Country-Year FEs</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Country-Sector FEs</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Sector-Year FEs</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>
Results - Elasticities between D and labor productivity by industrial sector

Figure: Elasticities between downstreamness and labor productivity
Results - Elasticities between U and labor productivity by industrial sector

Figure: Elasticities between upstreamness and labor productivity
Results - Elasticities between D and labor productivity by region

Figure: Elasticities between downstreamness and labor productivity
Results - Elasticities between U and labor productivity by region

Figure: Elasticities between upstreamness and labor productivity
Results

- General robust **negative association** between **downstreamness** and value added performances.
 - focusing on manufacturing sectors → cut of the right end of the standard “smiling curve”.
 - elasticity between D and LP is negative for all regions.
 - elasticities are negative for all the sectors.

- **Mixed evidence** for **upstreamness**.
 - controlling for the full set of fixed effects → negative association.
 - excluding sector-specific fixed effects → coefficient turns positive
 - no significance at regional level.
 - elasticity between U and LP is negative for all sectors except for Wood and Paper.
Concluding remarks

- We compute and provide **access to a new dataset of GVC positioning indicators** - now well established in the literature- at the country-sector level for a large number of countries and a long time span.
- We show that U and D are strongly **correlated** overtime, in line with Antràs and Chor (2018) work on WIOD data.
- We present **some pilot tests** starting from one of the most intriguing and important relationship, namely that between productivity and GVC positioning.
- We find that **positioning along the GVCs matters** in determining changes in value added.

Availability of new indicators of GVCs positioning at the country and sectoral level provided by this work

→ **Unprecedented opportunity to carry out** qualitative and quantitative analyses on economic aspects related to GVCs.
Thank you for your attention!
silvia.nenci@uniroma3.it