Global Value Chain and Trade Policy in the Agri-food Sector

Valentina Raimondi¹ Andreea Piriu¹ Jo Swinnen^{2, 3}

<u>Alessandro Olper 1, 2</u>

⁽¹⁾ University of Milano
 ⁽²⁾ LICOS – Centre for Institutions and Economic Performance
 ⁽³⁾ IFPRI – International Food Policy Research Institute

<u>Outline</u>

- Introduction & motivation
- Theory predictions
- Data, measures and identification
- Main results
- Concluding comments

Introduction & motivation

- In the last decades trade and trade policy changed a long **two dimensions**:
 - Rise in GVC participation and intermediate inputs trade crossing national border several times
 - An increase in RTAs with an expansion of the policy areas covered → deep RTAs
- Key Questions:
 - Are these two facts inter-related ?
 - Does GVC participation change the government's incentives over trade policy ?

Introduction and motivation

- Blanchard, Bown, and Johnson (2021) building on Antras and Staiger (2012)
 - Political economy model where the rise in GVC links reduce government' incentives to rise tariffs
 - Empirical support from 14 OECD countries across manufacturing industries
- Ludema, Mayda, Yu and Yu (2018) and Bown, Erbahar, and Zanardi (2020) similar findings
 - Focus only on the manufacturing sector
- What about the GVC effect on agri-food trade policy?

Introduction and motivation

- Crucial research question because trade protection in the agri-food is the rule more than the exception
- <u>Greenville et al. (2017)</u>
 - Tariffs and restrictive SPS negatively affects country-sectors participation in agri-food GVCs
- <u>Bailè et al. (2018)</u>
 - Bilateral tariffs are key determinants of both backward and forward GVC links in the agri-food
- Yet, these papers do not focused on a political economy research question

This paper

- We test predictions from the political economy model of Blanchard-Bown-Johnson (2021)
 - Investigating to what extent GVC participation affects trade policy in agriculture and food sectors
- <u>Main value added</u>:
 - **First** application on the agri-food sectors
 - Very large dataset: > 150 countries, 1995-2015
 - Focus on tariffs and of **NTMs ad-valorem eq.**
 - Accounting for deep PTAs (SPS/TBT) when studying heterogeneity of GVA effects in/out RTAs,

Blanchard-Bown-Johnson-BBJ (2021)

The model in a nutshell

- GVCs links into the GH (1994) "protection for sale" model
- Forward (DVA) and backward (FVA) links affect the **government optimal** tariff formula

Key result: → optimal tariff will deviate from the "inverse export supply elasticity rule" (TOT motives) depending on the nationality of VA content embody in home and foreign goods

- **BBJ** model considers:
 - Domestic value added (DVA): home country income gains by supplying home inputs to foreigners
 - Foreign value added FVA: the revenue component of domestic goods paid to foreign inputs suppliers
- Mechanism:
 - DVA: when foreigners use inputs from home,
 domestic govt. incentives to manipulate TOT reduces
 - FVA: when home producers use foreign inputs, some of the tariff rents accrue to foreign input suppliers, reducing govt. incentive to rise tariffs

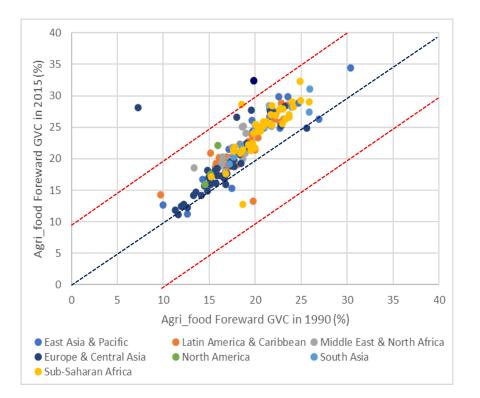
• **BBJ** optimal tariff formula:

$$t_{xj}^{i} = \frac{1}{e_{xj}^{i}} \left(1 + \left(1 + \delta_{x}^{gh} \right) GH_{xj}^{i} - \left(1 + \delta_{x}^{dva} \right) DVA_{xi}^{j} - \left(1 + \delta_{x*}^{fva} \right) FVA_{xj}^{i} \right)$$

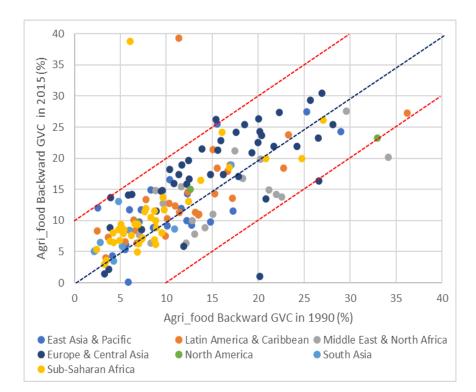
Terms-of-trade and domestic political motives for protection

New terms capturing *DVA* and *FVA* motives for optimal tariff

- Where t_{xj}^{i} is bilateral tariff (i, j) on **final goods** x
- e_{xj}^{i} is the **export supply elasticity** driving TOT motives;
- $GH_{xj}^i \rightarrow$ inverse of import penetration $\frac{q_x^i}{M_{xj}^i} \rightarrow$ domestic PE concerns;
- $\frac{DVA_{xi}^{J}}{M_{xj}^{i}} \text{ and } \frac{FVA_{x}^{i}}{M_{xj}^{i}} \text{ domestic (and foreign) value added share}$
- δ_x^i (δ_{xi}^*) and δ_{x*}^i are the **political weights** attached by the govt.

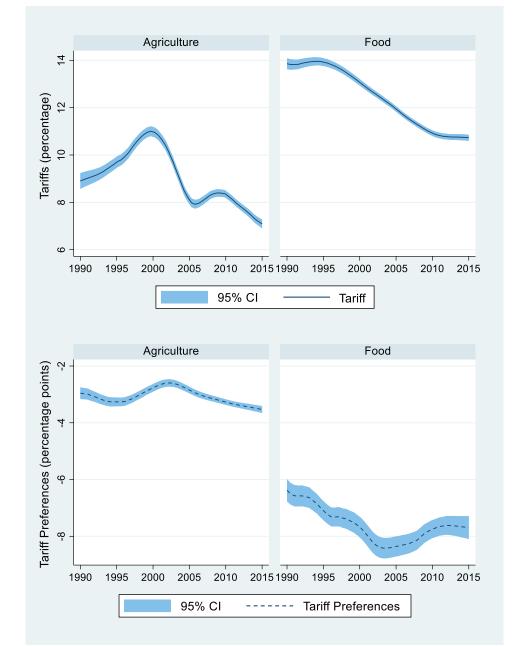

- Predictions for tariffs:
 - DVA \rightarrow lower optimal tariff as it raises the price of foreign final goods, and some of this pass back to home input prices (also if $\delta_{xi}^* = 0$)
 - FVA \rightarrow lower optimal tariff as part of the cost on import sectors passes upstream to foreign inputs suppliers (weaker if $\delta_{x*}^i > 0$)
- Heterogeneity in- vs out-side RTAs:
 - DVA effects = 0 inside RTAs, if they "solve" TOT
 - It does not apply to FVA as it works through a domestic price externality

- Predictions for NTMs:
 - Similar to tariffs if the price effects of NTMs dominate their possible quantity creation effect (e.g. consumer information)
- Heterogeneity in- vs out-side RTAs:
 - Difficult to evaluate a priory because NTM are set as non-discriminatory policy:
 - This is mainly an empirical question
 - We extend BBJ exploiting also information on deep RTAs with legally enforceable SPS/TBT provisions,...


Data and variables (>150 country, 1995-2015)

- DVA and FVA based on UNCTAD-Eora GVC Data
 - Flow decomposition using the R package decompr (Quast and Kummritz, 2015) based on Wang-Wei-Zhu (2013), ...
- Applied and MFN **tariffs** from Unctad-Trains and WTO
 - Data problems related to specific tariffs conversion and TRQs, we are updating using MacMaps,...
- NTMs ad-valorem-eq from Niu et al. (2018)
 - NTMs are largely non-discriminatory,... we induce
 "bilaterality" using an index of Abs. |NTM_i NTM_j| distance
 - This rise some conceptual problem with respect to BBJ
- RTAs from Egger and Larch (2008) data; Deep PTAs with SPS/TBT provisions from World Bank deep PTAs data

Evolution of DVA and FVA 1990-2015



(a) Forward linkages - DVA

(b) Backward linkages - FVA

Evolution of tariffs and preferences

Identification (1)

1. Reduce form eq. with imp-exp-sector-time FEs to control for observed(unobserved) tariff determinants

$$t_{xjt}^{i} = \Phi_{xit} + \Phi_{xjt} + \beta^{DVA} \ln\left(DVA_{xit}^{j}\right) + \nu_{xijt}$$

- t_{xjt}^i applied tariff, or NTM ad-valorem distance
- OLS and **2SLS** because DVA is endogeneous to tariffs
 - Instrument: **DVA-services** by country *i* used by *j*
- expected signs $\beta^{DVA} < 0$
- Main identification assumption: FEs control well for omitted variable bias,...

Identification (2)

 Full specification accounting for FVA(GH), but relaxing FEs with imp-sector and time FEs → FVA is a multilateral variable

$$\begin{aligned} t_{xjt}^{i} &- t_{xt}^{i,MFN} \\ &= \Phi_{xi} + \Phi_{it} + \Phi_{xjt} + \beta^{IP} \ln(FG_sh_{xt}^{i}) - \beta^{FVA} \ln(FVA_sh_{xt}^{i}) \\ &- \beta^{DVA} \ln(DVA_sh_{xit}^{j}) + \omega_{xijt} \end{aligned}$$

- $t_{xjt}^{i} t_{xt}^{i,MFN}$ tariff preference (or NTM ad-valorem distance)
- All variable scaled by bilateral import (share)
- $FG_sh_{xt}^i$ final goods production scaled by imports
- Expectation: $\beta^{IP} > 0$, $\beta^{DVA} < 0$ and $\beta^{FVA} < 0$
- Main identification assumption: NO simultaneity bias !

Results (1) Reduce form equation

Equation 1. DVA and tariffs, OLS results

	Agri-food			А	gricultur	re	Food industry		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Ln DVA	-0.689***	-0.552***		-0.598***	-0.480***		-0.777***	-0.621***	
	(0.032)	(0.030)		(0.030)	(0.028)		(0.041)	(0.040)	
FTA		-4.410***	-5.654***		-4.133***	-4.880***		-4.658***	-6.368***
		(0.179)	(0.330)		(0.185)	(0.382)		(0.213)	(0.393)
Ln DVA_FTA=1		(-0.325***			-0.345***			-0.307***
			(0.064)			(0.069)			(0.082)
Ln DVA_FTA=0			-0.595***			-0.506***			-0.680***
			(0.029)			(0.027)			(0.038)
Fixed effects									
Imp-Ind-Year	Yes	Yes	Yes	No	No	No	No	No	No
Exp-Ind-Year	Yes	Yes	Yes	No	No	No	No	No	No
Imp-Year	No	No	No	Yes	Yes	Yes	Yes	Yes	Yes
Exp-Year	No	No	No	Yes	Yes	Yes	Yes	Yes	Yes
No. of obs.	171214	171214	171214	81901	81901	81901	89313	89313	89313
R-Sq	0.876	0.881	0.881	0.915	0.919	0.919	0.833	0.838	0.839

Quantitatively, the DVA coefficient of -0.55 in column (2), means that moving from low to high DVA, induce a tariffs reduction of about 42%

DVA effect outside FTAs is significantly larger than inside

Equation 1. DVA and tariffs, OLS vs IV estimates

	Agri-food		Agric	ulture	Fo	Food	
	OLS	IV	OLS	IV	OLS	IV	
	(1)	(2)	(3)	(4)	(5)	(6)	
Ln DVA_FTA=1	-0.386***	-0.363***	-0.361***	-0.364***	-0.410***	-0.371***	
	(0.073)	(0.105)	(0.071)	(0.111)	(0.100)	(0.121)	
Ln DVA_FTA=0	-0.672***	-1.188***	-0.522***	-1.052***	-0.817***	-1.310***	
	(0.034)	(0.058)	(0.031)	(0.062)	(0.044)	(0.062)	
FTA	-5.314***	-7.518***	-4.513***	-6.669***	-6.075***	-8.251***	
	(0.426)	(0.614)	(0.448)	(0.673)	(0.554)	(0.706)	
No. of obs.	123036	123036	59562	59562	63474	63474	
R-Sq	0.889	0.887	0.926	0.923	0.848	0.846	

DVA coefficient systematically larger when FTA=0 vs FTA=1, particularly in the IV regressions

Eq. 1. NTMs and DVA: OLS and IV regression results

Dependent variable:		NTMs ad-valorem equivalent distance					
		OLS	OLS	OLS	IV	IV	
		(1)	(2)	(3)	(4)	(5)	
L5.lnDVA	\bigcap	-0.0147***	-0.0146**	*	-0.0247***		
		(0.001)	(0.001)		(0.002)		
FTA			-0.0029	0.0042	0.009	0.0026	
			(0.007)	(0.012)	(0.007)	(0.018)	
L5.lnDVA_FTA=1				-0.0158***		-0.0237***	
				(0.002)		(0.003)	
L5.lnDVA_FTA=0				-0.0145***		-0.0248***	
				(0.001)		(0.002)	
No. of obs.		57433	57433	57433	57433	57433	
R-Sq		0.608	0.608	0.608	0.604	0.604	

Quantitatively, the DVA coefficient of -0.0146 in column 2, suggests that moving from a low to a high DVA values in our sample, induce a reduction in NTMs of about 33%.

However, no difference in and out FTAs.

Results (2) Full specification in share

Eq. 2. Tariffs and FVA: OLS regressions

Dependent variable	Tariffs preferences			
	(1)	(2)		
$\ln DVA_sh FTA = 1$	-0.1803*	-1.0382***		
	(0.0942)	(0.0962)		
$\ln DVA_sh FTA = 0$	-0.0572	-1.1037***		
	(0.0528)	(0.0486)		
$\ln FVA_{sh} FTA = 1$	-0.1653			
	(0.1057)			
$\ln FVA_sh FTA = 0$	-0.3008***			
	(0.0485)			
$\ln FG_{sh} FTA = 1$	0.5430***			
	(0.0664)			
$\ln FG_{sh} FTA = 0$	0.8033***			
	(0.0295)			
$\ln FVA_FG_sh FTA = 1$		0.6109***		
		(0.0510)		
$\ln FVA_FG_sh FTA = 0$		0.7543^{***}		
		(0.0296)		
FTA	-0.6040	-1.8148***		
	(0.5181)	(0.3559)		
Fixed effects				
Importer-year	Yes	No		
Industry-year	Yes	No		
Importer-industry-year	No	Yes		
Exporter-industry-year	Yes	Yes		
No. of obs.	96552	96552		
R-Sq	0.983	0.986		

Eq. 2. NTM ad-valorem distance and FVA: OLS results

Dependent variable:	NTMs ad-valorem distance			
	(3)	(4)		
L5. ln DVAsh_FTA=1	0.0110**	-0.0212***		
	(0.005)	(0.003)		
L5. ln DVAsh_FTA=0	0.0045*	-0.0252***		
	(0.003)	(0.002)		
L5. ln FVAsh_FTA=1	-0.0181***			
	(0.004)			
L5. ln FVAsh_FTA=0	-0.0124***			
	(0.002)			
L5. ln FGsh_FTA=1	0.0161***			
	(0.001)			
L5. ln FGsh_FTA=0	0.0173***			
	(0.001)			
L5. ln FVA_FG_FTA=1		0.0149***		
		(0.002)		
L5. ln FVA_FG_FTA=0		0.0168***		
		(0.001)		
FTA	0.0078	0.0067		
	(0.008)	(0.008)		
Fixed effects				
Importer-year	Yes	No		
Industry-year	Yes	No		
Importer-industry-year	No	Yes		
Exporter-industry-year	Yes	Yes		
No. of obs.	50494	50492		
R-Sq	0.566	0.608		

Results (3) Are deep PTAs different ?

Eq. 2. NTMs ad-valorem distance and DVA: Heterogeneity in Deep FTAs

	Agri-food	Agriculture	Food
	(1)	(2)	(3)
Lag 5. lnDVA_sh: FTA=0, Deep=0 (1)	-0.0215***	-0.0168***	-0.0270***
	(0.0018)	(0.0021)	(0.0024)
Lag 5. lnDVA_sh: FTA=0, Deep=1 (2)	-0.0221***	-0.0176***	-0.0279***
	(0.0022)	(0.0026)	(0.0029)
Lag 5. lnDVA_sh: FTA=1, Deep=0 (3)	-0.0202***	-0.0160***	-0.0247***
	(0.0026)	(0.0030)	(0.0037)
Lag 5. lnDVA_sh: FTA=1, Deep=1 (4)	-0.0229***	-0.0176***	-0.0298***
	(0.0043)	(0.0037)	(0.0074)
Lag 5. lnFGsh_FVA_sh	0.0145***	0.0115***	0.0176***
	(0.0011)	(0.0012)	(0.0013)
Fixed effects			
Importer-industry-year	Yes	Yes	Yes
Exporter-industry-year	Yes	Yes	Yes
No. of obs.	50492	24404	26088
R-Sq	0.6109	0.6115	0.5952

Deep is a dummy equal to 1 (0 otherwise) when the FTA involve higher than the median number of SPS/TBT provisions legally enforceable

Conclusions

- Results **strongly confirm** the Blanchard et al theory using both tariffs and NTMs
- GVC participations emerged as a **first order determinant** of trade policy in the agri-food
- We find **mixed evidence** of the heterogeneity impacts of DVA on tariffs in and out FTAs
 - Endogeneity problems or sensitive products ?
- And **no heterogeneity** at all when **NTMs** ad valorem distance is considered
- This highlights the governments' difficulty to cooperate over trade policy when the agri-food sector is at stake

Thank you